ON THE CLASSIFICATION OF SOME CLASSES OF DOPPELSEMIGROUPS UP TO ISOMORPHISM

V. M. Gavrylkiv

Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukrainevgavrylkiv@gmail.com

A doppelse migroup [5,8] is an algebraic structure (D, \dashv, \vdash) consisting of a non-empty set D equipped with two associative binary operations \dashv and \vdash satisfying the following axioms:

 $(D_1) (x \dashv y) \vdash z = x \dashv (y \vdash z),$

$$(D_2) (x \vdash y) \dashv z = x \vdash (y \dashv z).$$

A doppelsemigroup (D, \dashv, \vdash) is called *commutative* [6] if both semigroups (D, \dashv) and (D, \vdash) are commutative. A doppelsemigroup (D, \dashv, \vdash) is said to be *strong* [7] if it satisfies the axiom

$$x \dashv (y \vdash z) = x \vdash (y \dashv z).$$

Each semigroup (S, \dashv) can be consider as a (strong) doppelsemigroup (S, \dashv, \dashv) , and we denote this *trivial* doppelsemigroup by S. Let (D, \dashv, \vdash) be a doppelsemigroup. Denote by $(D, \dashv, \vdash)^d$ its *dual* doppelsemigroup (D, \dashv^d, \vdash^d) , where $x \dashv^d y = y \dashv x$ and $x \vdash^d y = y \vdash x$. It follows that $(D, \dashv, \vdash)^d$ is a (strong) doppelsemigroup if and only if (D, \dashv, \vdash) is a (strong) doppelsemigroup. Therefore, non-commutative doppelsemigroups are divided into the pairs of dual doppelsemigroups.

One of the main tasks in the study of algebraic structures is their classification up to isomorphism. In [3], the task of describing all pairwise non-isomorphic (strong) doppelsemigroups of order 3 has been solved.

Theorem 1. There exist 75 pairwise non-isomorphic three-element doppelsemigroups among which 41 doppelsemigroups are commutative. Non-commutative doppelsemigroups are divided into 17 pairs of dual doppelsemigroups. Also up to isomorphism there are 65 strong doppelsemigroups of order 3, and all non-strong doppelsemigroups are not commutative. There exist exactly 24 pairwise non-isomorphic three-element trivial doppelsemigroups.

A doppelsemigroup (G, \dashv, \vdash) is called a group doppelsemigroup if (G, \dashv) is a group. It follows that (G, \vdash) is a group isomorphic to (G, \dashv) , see [1,2].

Proposition 1. Let (G, \dashv) be a group and let (G, \dashv, \vdash) be a doppelse migroup. Then $\vdash = \dashv_a$ for some $a \in G$.

Corollary 1. Let (G, \dashv) be an Abelian group and let (G, \dashv, \vdash) be a doppelsemigroup. Then (G, \dashv, \vdash) is a commutative strong doppelsemigroup and $\vdash = \dashv_a$ for some $a \in G$.

Recall that the number of divisors function $\tau(n)$ is defined as the number of natural divisors of a natural number n.

A doppelsemigroup (G, \dashv, \vdash) said to be *cyclic* if (G, \dashv) is a cyclic group. The following theorems on the number of pairwise non-isomorphic cyclic doppelsemigroups were proved by the author, see [4].

Theorem 2. There exist $\tau(n)$ pairwise non-isomorphic finite cyclic doppelsemigroups of order n. All finite cyclic doppelsemigroups are strong and commutative.

http://www.imath.kiev.ua/~young/youngconf2023

Theorem 3. Let $a, b \in \mathbb{Z}$. The doppelsemigroups $(\mathbb{Z}, +, +_a)$ and $(\mathbb{Z}, +, +_b)$ are isomorphic if and only if $b \in \{a, -a\}$. Consequently, there exist countably infinite many pairwise non-isomorphic infinite cyclic (commutative strong) doppelsemigroups.

- 1. Boyd S.J., Gould M., Nelson A. Interassociativity of Semigroups. Proceedings of the Tennessee Topology Conference, World Scientific., 1997, 33–51.
- 2. Drouzy M. La structuration des ensembles de semigroupes d'ordre 2, 3 et 4 par la relation d'interassociativité, manuscript, 1986.
- Gavrylkiv V.M., Rendziak D.V. Interassociativity and three-element doppelsemigroups. Algebra Discrete Math., 2019, 28, 2, 224–247.
- 4. Gavrylkiv V. Note on cyclic doppelsemigroups. Algebra Discrete Math., 2022, 34, 1, 15–21.
- Zhuchok A.V., Demko M. Free n-dinilpotent doppelsemigroups. Algebra Discrete Math., 2016, 22, 2, 304–316.
- 6. Zhuchok A.V. Free products of doppelsemigroups. Algebra Univers., 2017, 77, 3, 361–374.
- Zhuchok A.V. Structure of free strong doppelsemigroups. Commun. Algebra, 2018, 46, 8, 3262– 3279.
- Zhuchok A.V. Relatively free doppelsemigroups. Monograph series Lectures in Pure and Applied Mathematics. Germany, Potsdam: Potsdam University Press., 5, 2018, 86 p.