ON AUTOMORPHISMS OF SUPEREXTENSIONS OF SEMIGROUPS

VOLODYMYR GAVRYLKIV

A family \mathcal{M} of non-empty subsets of a set X is called an upfamily if for each set $A \in \mathcal{M}$ any subset $B \supset A$ of X belongs to \mathcal{M} . By v(X) we denote the set of all upfamilies on a set X. Each family \mathcal{B} of non-empty subsets of X generates the upfamily $\{A \subset X : \exists B \in \mathcal{B} \ (B \subset A)\}$ which we denote by $\langle B \subset X : B \in \mathcal{B} \rangle$. An upfamily \mathcal{F} that is closed under taking finite intersections is called a *filter*. A filter \mathcal{U} is called an *ultrafilter* if $\mathcal{U} = \mathcal{F}$ for any filter \mathcal{F} containing \mathcal{U} . The family $\beta(X)$ of all ultrafilters on a set X is called the *Stone-Čech compactification* of X, see [6]. An ultrafilter $\langle \{x\} \rangle$, generated by a singleton $\{x\}, x \in X$, is called *principal*. Each point $x \in X$ is identified with the principal ultrafilter $\langle \{x\} \rangle$ generated by the singleton $\{x\}$, and hence we can consider $X \subset \beta(X) \subset v(X)$. It was shown in [3] that any associative binary operation $* : S \times S \to S$ can be extended to an associative binary operation $* : v(S) \times v(S) \to v(S)$ by the formula

$$\mathcal{L} * \mathcal{M} = \left\langle \bigcup_{a \in L} a * M_a : L \in \mathcal{L}, \ \{M_a\}_{a \in L} \subset \mathcal{M} \right\rangle$$

for upfamilies $\mathcal{L}, \mathcal{M} \in v(S)$. In this case the Stone-Čech compactification $\beta(S)$ is a subsemigroup of the semigroup v(S). The semigroup v(S) contains as subsemigroups many other important extensions of S. In particular, it contains the semigroup $\lambda(S)$ of maximal linked upfamilies. An upfamily \mathcal{L} of subsets of S is said to be *linked* if $A \cap B \neq \emptyset$ for all $A, B \in \mathcal{L}$. A linked upfamily \mathcal{M} of subsets of S is maximal linked if \mathcal{M} coincides with each linked upfamily \mathcal{L} on S that contains \mathcal{M} . It follows that $\beta(S)$ is a subsemigroup of $\lambda(S)$. The space $\lambda(S)$ is well-known in General and Categorial Topology as the superextension of S, see [7].

Given a semigroup S we shall discuss the algebraic structure of the automorphism group $\operatorname{Aut}(\lambda(S))$ of the superextension $\lambda(S)$ of S. We show that any automorphism of a semigroup S can be extended to an automorphism of its superextension $\lambda(S)$, and the automorphism group $\operatorname{Aut}(\lambda(S))$ of the superextension $\lambda(S)$ of a semigroup S contains a subgroup, isomorphic to the group $\operatorname{Aut}(S)$. We describe in [1, 2, 4] automorphism groups of superextensions of groups, finite monogenic semigroups, null semigroups, almost null semigroups, right zero semigroups, left zero semigroups and all three-element semigroups.

References

- T. Banakh, V. Gavrylkiv, Automorphism groups of superextensions of groups, Mat. Stud. 48(2) (2017), 134–142.
- T. Banakh, V. Gavrylkiv, Automorphism groups of superextensions of finite monogenic semigroups, Algebra Discrete Math. (2019), to appear.
- [3] V. Gavrylkiv, Right-topological semigroup operations on inclusion hyperspaces, Mat. Stud. 29(1) (2008), 18-34.
- [4] T. Banakh, V. Gavrylkiv, On structure of the semigroups of k-linked upfamilies on groups, Asian-Eur. J. Math. 10(4) (2017), 1750083 [15 pages]
- [5] V. Gavrylkiv, Semigroups of centered upfamilies on finite monogenic semigroups, J. Algebra, Number Theory: Adv. Appl. 16(2) (2016), 71-84. – DOI: 10.18642/jantaa7100121719.
- [6] V. Gavrylkiv, Semigroups of centered upfamilies on groups, Lobachevskii J. Math. 38(3) (2017), 420-428. DOI: 10.1134/S1995080217030106.
- [7] V. Gavrylkiv, On the automorphism group of the superextension of a semigroup, Mat. Stud. 48(1) (2017), 3–13.
- [8] V. Gavrylkiv, Automorphisms of semigroups of k-linked upfamilies, J. Math. Sci., 234(1) (2018), 21–34.
- [9] N. Hindman, D. Strauss, Algebra in the Stone-Čech compactification, de Gruyter (Berlin, New York, 1998).
 Date: May 3, 2019.

Key words and phrases. Superextension, maximal linked family, automorphism group.

[10] A. Verbeek, Superextensions of topological spaces, Mathematical Centre Tracts, Vol. 41 (Amsterdam, 1972).

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, VASYL STEFANYK PRECARPATHIAN NATIONAL UNIVERSITY, IVANO-FRANKIVSK, UKRAINE Email address: vgavrylkiv@gmail.com

URL: gavrylkiv.pu.if.ua