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A familyM of non-empty subsets of a set X is called an upfamily if for each set A ∈M any
subset B ⊃ A of X belongs toM. By υ(X) we denote the set of all upfamilies on a set X. Each
family B of non-empty subsets of X generates the upfamily {A ⊂ X : ∃B ∈ B (B ⊂ A)} which
we denote by 〈B ⊂ X : B ∈ B〉. An upfamily F that is closed under taking finite intersections
is called a filter. A filter U is called an ultrafilter if U = F for any filter F containing U . The
family β(X) of all ultrafilters on a set X is called the Stone-Čech compactification of X, see [6].
An ultrafilter 〈{x}〉, generated by a singleton {x}, x ∈ X, is called principal. Each point x ∈ X
is identified with the principal ultrafilter 〈{x}〉 generated by the singleton {x}, and hence we
can consider X ⊂ β(X) ⊂ υ(X). It was shown in [3] that any associative binary operation
∗ : S × S → S can be extended to an associative binary operation ∗ : υ(S)× υ(S)→ υ(S) by
the formula

L ∗M =
〈 ⋃

a∈L

a ∗Ma : L ∈ L, {Ma}a∈L ⊂M
〉

for upfamilies L,M ∈ υ(S). In this case the Stone-Čech compactification β(S) is a subsemi-
group of the semigroup υ(S). The semigroup υ(S) contains as subsemigroups many other
important extensions of S. In particular, it contains the semigroup λ(S) of maximal linked
upfamilies. An upfamily L of subsets of S is said to be linked if A ∩B 6= ∅ for all A,B ∈ L. A
linked upfamilyM of subsets of S is maximal linked ifM coincides with each linked upfamily
L on S that contains M. It follows that β(S) is a subsemigroup of λ(S). The space λ(S) is
well-known in General and Categorial Topology as the superextension of S, see [7].

Given a semigroup S we shall discuss the algebraic structure of the automorphism group
Aut(λ(S)) of the superextension λ(S) of S. We show that any automorphism of a semigroup S
can be extended to an automorphism of its superextension λ(S), and the automorphism group
Aut(λ(S)) of the superextension λ(S) of a semigroup S contains a subgroup, isomorphic to
the group Aut(S). We describe in [1, 2, 4] automorphism groups of superextensions of groups,
finite monogenic semigroups, null semigroups, almost null semigroups, right zero semigroups,
left zero semigroups and all three-element semigroups.
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