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YkKpalHChbKUI MaTeMaTUIHUN BiCHUK
Tom 14 (2017), Ne 4, 496 — 514 M

Automorphisms of semigroups
of k-linked upfamilies

VOLODYMYR M. GAVRYLKIV
(Presented by V. O. Derkach)

Abstract. A family A of non-empty subsets of a set X is called an
upfamily if for each set A € A any set B D A belongs to A. An upfamily
L is called k-linked if (\F # ( for any subfamily 7 C £ of cardinality
|F| < k. The extension Ni(X) consists of all k-linked upfamilies on X.
Any associative binary operation * : X x X — X can be extended to an
associative binary operation * : N (X)X Ni(X) — N (X). In the paper,
we study automorphisms of the extensions of groups, finite monogenic
semigroups and describe the automorphism groups of extensions of null
semigroups, almost null semigroups, right zero semigroups and left zero
semigroups.

2010 MSC. 18B40, 37L05, 22A15, 20D45, 20M15, 20B25.

Key words and phrases. Semigroup, k-linked upfamily, automor-
phism group.

Introduction

In this paper, we investigate the automorphism groups of the exten-
sions Ng(S) of a semigroup S. The thorough study of various exten-
sions of semigroups was started in [13] and continued in [1-10, 14-19|.
The largest among these extensions is the semigroup v(S) of all upfam-
ilies on S. A family A of non-empty subsets of a set X is called an
upfamily if for each set A € A any subset B O A of X belongs to
A. FEach family B of non-empty subsets of X generates the upfamily
(B)y :={A C X :3B € B (B C A)}. An upfamily F that is closed
under taking finite intersections is called a filter. A filter U is called an
ultrafilter it U = F for any filter F containing Y. The family 5(X) of
all ultrafilters on a set X is called the Stone-Cech compactification of X,
see [20,24]. An ultrafilter ({z}), generated by a singleton {z}, z € X,
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is called principal. Each point € X is identified with the principal ul-
trafilter ({z}) generated by the singleton {z}, and hence we can consider
X C B(X) C v(X). It was shown in [13] that any associative binary op-
eration * : § x .S — S can be extended to an associative binary operation
1 v(S) x v(S) — v(S) by the formula

A*B:<Ua*Ba:AEA, {Ba}aeACB>

acA

for upfamilies A, B € v(S). In this case the Stone-Cech compactification
B(S) is a subsemigroup of the semigroup v(S5).

The semigroup v(.S) contains many other important extensions of S.
In particular, it contains the semigroups N(.S) of k-linked upfamilies for
k € N\ {1}. An upfamily £ € v(S) is called k-linked if (| F # () for any
subfamily F C L of cardinality |F| < k. The space Ng(S) is well-known
in General and Categorial Topology, see [22-25].

For a finite set X the cardinality of the set Ny (X) growth very quickly
as |X| tends to infinity. The calculation of the cardinality of Nj(X)
seems to be a difficult combinatorial problem related to the still unsolved
Dedekind’s problem of calculation of the number M (n) of all monotone
Boolean functions of n Boolean variable, see [11].

We were able to calculate the cardinalities of Ni(X) only for sets X
of cardinality |X| < 5, see [12]. The results of (computer) calculations
are presented in Table 1.

] | 1Ne (0] [ IN(X)| [ [Va(0)
1 1 1 1
2 3 3 3
3 11 10 10
4 80 54 53
5 2645 762 687

Table 1: The cardinalities of Ni(X) for sets X of cardinality | X| <5
Each map f: X — Y for each k € N\ {1} induces the map
Nif: Ne(X) = Np(Y), Nif: M (f(M): M e M), see[12].
If o : S — S is a homomorphism of semigroups, then for each k €

N\ {1}, the map Ny : Ng(S) — Ni(S) is a homomorphism as well,
see [13].
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Recall that an isomorphism between semigroups S and S’ is bijective
function ¢ : S — S’ such that ¢(xy) = ¥(z)Y(y) for all z,y € S. If
there exist an isomorphism between S and S’, then S and S’ are said to
be isomorphic, denoted S = S’. An isomorphism 1 : S — S is called an
automorphism of a semigroup S. By Aut (S) we denote the automorphism
group of a semigroup S.

A non-empty subset I of a semigroup S is called an ideal if ISUST C I.
An ideal I of a semigroup S is said to be properif I # S. A proper ideal
M of S is mazimal if M coincides with each proper ideal I of S that
contains M. An element z of a semigroup S is called a zero (resp. a left
zero, a right zero) in S if az = za = z (resp. za = z, az = z) for any
a € S. An element e of a semigroup S is called an idempotent if ee = e.
By E(S) we denote the set of all idempotents of a semigroup S.

1. Extending automorphisms from a semigroup
to its extensions

In this section we show that for each k¥ € N\ {1} any automorphism
of a semigroup S can be extended to an automorphism of its extension
N (S) and the automorphism group Aut (N (5)) of the extension N (.5)
of a semigroup S contains a subgroup, isomorphic to the group Aut(S).

The following propositions are corollaries of the functoriality of Nj in
the category of semigroups, see [3,24].

Proposition 1.1. If ¢ : S — S is an automorphism of a semigroup
S, then for each k € N\ {1} the map Ny : Ni(S) — Ng(S) is an
automorphism of the extension Ni(S).

Proposition 1.2. For each k € N\ {1} the automorphism group
Aut (Ng(S)) of the extension Ni(S) of a semigroup S contains a sub-
group, isomorphic to the automorphism group Aut(S) of S.

2. The automorphism groups of the extensions Ny (G)
of a group GG

In this section we shall study automorphisms of extensions Nj(G) of
a group G.

Proposition 2.1. Let G be a group, k € N\ {1}. If¢ : N(G) — Ni(G)
is an automorphism, then ¥(G) = G.

Proof. 1t was shown in [8, Proposition 4.2] that Ni(G) \ G is an ideal of
Ni(G). Let us prove that N (G)\G is the unique maximal ideal of Ni(G).
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Indeed, let I be any ideal of Ni(G). If g € GNI, then Ni(G) = gNk(G) C
I, and hence I = Ni(G). Consequently, Ni(G) \ G contains each proper
ideal of Ni(G). Taking into account that the set of maximal ideals of
a semigroup is preserved by isomorphisms and Ni(G) \ G is the unique
maximal ideal of Ni(G), we conclude that ¢(Ni,(G) \ G) = Ni(G) \ G.
Therefore, ¥ (G) = G. O

Corollary 2.2. Fach automorphism of Ni(G) is an extension of an
automorphism of a group G.

Next we shall describe the structure of the automorphism groups of
extensions Ni(G) of finite groups G of cardinality |G| < 3.

Before describing the structure of extensions of finite groups, let us
make some remarks concerning the structure of a semigroup S containing
a group G with the identity element which also is a left identity of S. In
this case S can be thought as a G-space endowed with the left action of
the group G. So we can consider the orbit space S/G = {Gs : s € S}
and the projection 7 : S — S/G. If G lies in the center of the semigroup
S (which means that the elements of G commute with all the elements
of S), then the orbit space S/G admits a unique semigroup operation
turning S/G into a semigroup and the orbit projection 7 : S — S/G into
a semigroup homomorphism. If s € S is an idempotent, then the orbit G's
is a group isomorphic to a quotient group of G. A subsemigroup T" C S
will be called a transversal semigroup if the restriction 7 : T'— S/G is an
isomorphism of the semigroups. If S admits a transversal semigroup 7,
then it is a homomorphic image of the product G xT" under the semigroup
homomorphism

h:GxT —S, h:(g,t)— gt.

This helps to recover the algebraic structure of S from the structure of a
transversal semigroup.

2.1. The semigroups Ny(C})

For the cyclic group C7 the semigroups Ni(C1), k > 2, are isomorphic
to C1. Therefore, Aut (Ni(C1)) = Aut(Cy) = Ch.

2.2. The semigroups Ny(Cs)

For the cyclic group Cy the semigroups Ni(C2), k > 2, contain two
principal ultrafilters and the k-linked upfamily {Cs} which is the zero
in Ni(C2). The semigroups Ni(C9) are isomorphic to the semigroup
{=1,0,1}. Since the zero is preserved by automorphisms of semigroups,
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each automorphism of Cs is extended to the unique automorphism of
Ni(C2) by Corollary 2.2. Therefore, Aut (Ng(C2)) = Aut (Cs) = (4.

2.3. The semigroups Ny(Cs)

2

Consider the cyclic group C3 = {a) = {e,a,a? : a® = e} generated by

a = e2™/3 ¢ C.
Let us introduce the notations

ly = 1% = {=,u}),

V= {F CCy:|F|>2zcF),
A={FcCCy:|F| =2},

O ={Cs}.

In these notations Nj(C3) = {e,a,a3,]%]%°,|", Ve, Va, Va2, O} for
k> 3 and NQ(Cg) = Nk(c;g) U {A}

s lala| e |11 |Vl Val Ve | O~
a a? e a 1112 ]9 | Ve | Va2 | Va |O| A
a? e a a? a 22 22 Vg | Ve | Va2 | O || A
e a a? e 22 a ZQ Va2 | Va | Ve | O || A
Sl 1@ |ololol k|11 |o|a
sl 1] jolojolIE 1] e |O]|A
Sl @l |lolololl@ k|1 |o]a
Vaz || Ve | Va [Va2 |O | O[O | Va | Ve | Va2 [O]| A
Vo [[Vaz | Ve | Va |O | O[O Ve [Va2 | Va |[O| A
Ve || Va [ Va2 | Ve |O ] O[O | Va2 | Va | Ve | O] D
OO0 |]O|]O]O|OlO OO ]0O|A
Alalalalolololalalalola

Table 2: The Cayley table for the semigroups N (C3)

Analyzing the Cayley Table 2 for the semigroups Ni(C3) we can es-
tablish the following properties.

The semigroup N2(C3) contains 11 elements among them there are
4 idempotents: e, Ve, (), AA. Two idempotents are right zeros. The
orbit semigroup N2(C3)/Cs contains 5 elements. The semigroup Na(C'3)
contains a transversal semigroup T'(N2(C3)) = {e, |2, Ve, O, A}
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For k > 3 the semigroups Ni(C3) contain 10 elements among them
there are 3 idempotents e, V¢, () which commute. The set E(Ny(C3)) of
idempotents of Nj(C3) is isomorphic to the semilattice 3 = {0, 1,2} en-
dowed with the operation of minimum. The orbit semigroups N (C3)/C3
contain 4 elements. The semigroups Ny (C3) contain transversal semi-
groups T'(Ni(Cs)) = {e, |ga Ve, O}

Therefore, Ni(C3) = {z,z-|% 2 Ve, O | € C3} for k > 3 and
NQ(Cg) = Nk(C'g,) U {A}

We shall prove that the automorphism groups Aut(Ng(C3)) of the
semigroups N (C3) are isomorphic to the holomorph Hol(C3) of the group
Cs.

We recall that the holomorph Hol(G) of a group G (see [23]) is the
semi-direct product G x Aut (G) := (G x Aut (G), x) of the group G with
its automorphism group Aut (G), endowed with the group operation

(z, [)*(y,9) = (z- f(y), fog).

It is known' that for the cyclic group C3 its holomorph Hol(C3) is iso-
morphic to the symmetric group Ss.

Proposition 2.3. For each k € N\ {1}, the automorphism group
Aut (Ng(C3)) is isomorphic to the holomorph Hol(C3) of the cyclic group
Cs and hence is isomorphic to the symmetric group Ss.

Proof. Let ¢ : Ni(C3) — Ni(C3) be an automorphism. Then the re-
striction of ¥ to C5 is an automorphism of C3 by Proposition 2.1, and
hence 1(e) = e.

Since the semigroup Na(C3) contains two right zeros and the set of
right zeros is preserved by automorphisms of semigroups, ¥ ({A,O}) =
{A, O} for any automorphism 1 : N2(C3) — Na(C3). Assume that
(L) = O and H(0) = A, then H(A-[2) = H(O) = A but (A)15(|2) =
O- (%) € O-(N2(C3)\{A,O}) = {O}. So we arrive to a contradiction
with ¢ € Aut (N2(C3)). Therefore, ¥(A) = A and ¢(QO) = O for each
automorphism 1 : Na(C3) — Na(Cs).

The k-linked upfamily O is the zero of semigroups N (C3) for k > 3.
Since the zero is preserved by automorphisms of semigroups, ¥(Q)) = O
for any automorphism 1 : Ni(C3) — Ni(C3), k > 3.

Taking into account that (E(Ny(C3))) = E(Nk(Cs)), we conclude
that 1(Ve) = Ve for each ¢ € Aut (Ng(C3)), k > 2. Therefore, (z-V,) =
$(@) - B(Ve) = () - V, for any z € Cs,

Let ¢(|¢) = ¢ - |¢ for some ¢ € C3. Then ¢(z - |¢) = ¢¥(z)-c- |¢
for any z € Cs. It follows that an element ¢ can be chosen from Cj in

"https://groupprops.subwiki.org/wiki/Holomorph_of_a_group
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one of three ways and hence analyzing the Cayley Table 2 one can check
that each automorphism of C5 can be extended to an automorphism of
Ni(C3) exactly in three different ways.

For any pair (c, f) € C3 x Aut (C3) consider the automorphism ). ¢)
of Ni(Cs3) defined by

wc,f(x) = f($)7 %,f(ﬂl? ' \/e) = f(.’L') Ve, wc,f(x : ‘Z) = f(.’L') cC |Z

for € Cs, Y. r(0O) =0,

and v s(A) = A for the semigroup No(Cs).

It follows that each automorphism of Nj(C3) is of the form . ¢ for
some (¢, f) € Cg x Aut (Cs).

Observe that for any (b, f), (c,g) € C3 x Aut(C3) and = € C5 we get:

Consequently, ¥y ¢ © ey = Py f(c),fog and hence for each k € N\ {1}
the group Aut (Ng(C3)) is isomorphic to the holomorph Hol(C3) = C5 x
Aut (C3) = C3 x Oy of the group C3, which is known to be isomorphic
to the symmetric group Ss. O

3. The automorphism groups of the extensions of finite
monogenic semigroups

A semigroup (a) = {a" },,cn generated by a single element a is called
monogenic or cyclic. If a monogenic semigroup is infinite, then it is
isomorphic to the additive semigroup N. A finite monogenic semigroup
S = (a) also has the simple structure, see [21]. There are positive integer
numbers r and m called the indexr and the period of S such that

e S={a,a®....,a"" Y and r+m —1=|5|;

° ar+m _ ar.

- )

e {a",a" "1 ... a"™™ 1} is a cyclic and the maximal subgroup of S

with the identity element e = a™ and generator a"™', where n €
m-Nn{r,...,r+m—1}.
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From now on we denote by M, ,, a finite monogenic semigroup of
index r and period m, and the maximal subgroup of M, ,,, is denoted by
Cr,. Note that M, | =r+m — 1.

A homomorphism ¢ : .S — I from a semigroup S into an ideal I C §
is called a homomorphic retraction if ¢p(a) = a for any element a € I.

Let e be the identity element of the maximal subgroup C,, of a
monogenic semigroup M,.,,. The following lemma was proved in [15,
Lemma 1.3].

Lemma 3.1. The map ¢ : M., = Cpy, p(x) = ex, is a homomorphic
retraction and p(x)y = zy for any x € M, and y € Cp,.

Proposition 3.2. Let M, ,, be a monogenic semigroup of index r > 3.
If ¥« Np(My ) = Np(M, ) is an automorphism, then ¢ (s) = s for
any s € My .

Proof. Let M, ,, = (a) = {a,...,a",...,a" ™ '} and assume that ¢(a) =
A € Np(M; ) \ {a}. Since ® is an automorphism of Ni(M, ), ©(a *
Ni(M; ) = ¥(a) * p(Ng(M, ) = ¥(a) * Np(M;.,,). Hence the semi-
groups a * Ni(M,;,,) and A % Ni(M,.,,) are isomorphic. It is easy to see
that A x Ni(M, ) C a* Ni(M, ). Taking into account that in the ex-
tensions N (M, ,,) of a monogenic semigroup of index r > 3 the equality
L+ M = a? implies £ = M = a, we conclude that a® € a * Ng(M,.,) \
A % Ni(M,;.,,), and hence | A * Ng(M, ;)| < |a * Ni(M;,,)|. This con-
tradiction proves that 1 (a) = a, and therefore, ¥(a*) = (¥(a))! = a’ for
any i € {2,...,r+m —1}. O

Proposition 3.3. If ¢ : Ny(Mi ) = Np(Mi,,) is an automorphism,
then (M) = My .

Proof. Since a monogenic semigroup M ,, is isomorphic to the cyclic
group Cp,, we conclude that ¢¥(Mj,,) = M;,, according to Proposi-
tion 2.1. O

The following theorem shows that there are exist automorphisms of
the semigroups Ni(S) that are not extensions of automorphisms of a
semigroup S.

Consider the monogenic semigroup My ,,, =(a)={aq, ...
a®} and let

X ={M e Ny(Ma,,) | {a,a™™} € MY\ {a™ ).

Theorem 3.4. A homomorphism v : Mo, — Np(May), ¢¥(a) = A,
can be extended to an automorphism v : Np(Ma ) — Ni(Ma,m) if and
only if A € X. The automorphism group Aut(Ni(Ma,,)) contains as a
subgroup the symmetric group Sx.

’am—i-l | am+2 —
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Proof. Let A € X. Since for m > 2, o™ is the identity of the cyclic group
Cm=1{a% ...,a™*} and ay € C,,, then ay = p(ay) = a™(ay) = a™ Ty
for any y € Mg, according to Lemma 3.1. The monogenic semigroup
M3 = {a, a®} is a null semigroup with the zero a? and hence ay = a® =
a?y for any y € Mg 1. This implies that ax M = AxM and Mx*a = MxA
for any M € Nip(Ma,,), m € N. Indeed, aM = {a,a™ '} M € Ax M
and Ma = M{a,a™*'} € M A for any M € M, and hence a * M C
Ax M and Mxa C Mx* A. Since A > {a,a™"} is k-linked, a € A
or ™! € A for any A € A. Taking into account that Usca sMs D
aMy € ax M or Jyey sMs D a™  Mym+1 = aMym+1 € a x M for any
basic set (J,c 4 sMs € A x M, we conclude that A+ M C a* M. Let
Usens 54s € M s A. Since ¢y $4s D Ugeps(s{a} = s{a™'}) = Ma,
Mx A C M x*a. Therefore, Mx A= M=*aand A*x M =ax*x M.

Note that {a?} = {a,a™ "' }{a,a™ !} € AxA. Then the linkedness of
Ax A implies that Ax A = a?. By the same arguments a*x A = Axa = a’.
Therefore, ¥(a’) = A" = a’ for any i > 2.

Let us put ¢(A) = a and (M) = M for any M € Ni(Mz,)\{a, A}.
Then above proved equalities imply that M % £ = (M) x (L) for any
L,M € Ni(Ma,,). Since M x L € Ni(Ma,) \ {a, A} for any L, M €
Ni(Ms ), we have )(M x L) = M x L = p(M) * (L), and hence 1) is
an automorphism of Mg ,.

Let A ¢ X. If ¢(a) = a for some i € {2,...,m+1}, then ¢)(Ma,,) =
My \ {a}, and thus # is not one-to-one. Therefore, A ¢ XUMj ,,, and
thus Mg, C a*Ng (Mo, ) \AxNg(Ms,,). Consequently, |ax Ny (Mg )| >
| A % N (Ma )|, and hence v can not be a bijection.

Let us prove that the automorphism group Aut (Ny(Mg,,)) contains
as a subgroup the symmetric group Sx. Let us extend any bijection ¢ of
a set X to Ni(Ma ) putting ¢(£) = L for any £ € Ni(Ma,,) \X. As we
have shown above Mx A = Mxa = MxB and AxM = axM = BxM for
any A, B € X, M € Ng(Ma,,). Also AxB 5 {a,a™ 1 }{a,a™ '} = {a?},
and the linkedness of A * B implies that A x B = a? for any A, B € X.
Taking into account that M « £ € Ni(Ma,,) \ {a, A} for any L, M €
Ni(Ma ), we conclude that (M L) = M L. Therefore, (ML) =
M« L = p(M) (L) for any L, M € Ni(Mz,,), and hence ¢ is an
automorphism of Ni(Ma ;). O

Now we shall describe the structure of the automorphism groups of
semigroups of k-linked upfamilies on monogenic semigroups M, ,, of order
M| < 3.

It is well-known that Aut(M,,,) = C; for r > 2 and Aut(M;,,) =
Aut (Cp) = Cym), Where p(m) is the value of Euler’s function for m € N.
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3.1. The semigroups Ni(M; 1), Np(Mi2) and Ni(Ma 1)

For the trivial monogenic semigroup M;; the semigroups Ny (M 1)
are trivial as well. Therefore, Aut (N;(My,1)) = Aut(M; ;) = Aut(Cy) =
Ch.

For a semigroup M,.,,, = (a) with m+r = 3 the semigroups N(M, ,,)
contain the two principal ultrafilters a,a? and the k-linked upfamily
{M; 1}

Taking into account that M 5 is isomorphic to Co, we conclude that
Aut (Nk(MLQ)) =~ Aut (Nk(CQ)) =~ (.

Consider the semigroup Ni(Mz1). The proof of Theorem 3.4 im-
plies that 1(a?) = a? for any ¢ € Aut(Ny(Ma1)). Then except for the
identity automorphism the group Aut(N;(Mz 1)) contains the automor-
phism ¢ with ¢¥(a) = {M21}, Y({Ma2,1}) = a according to Theorem 3.4.
Consequently, Aut (N;(Mg 1)) = Cs.

3.2. The semigroups N,(M;3)

The semigroup M 3 is isomorphic to the cyclic group C3. Therefore,

Aut (Nk(MLg)) =~ Aut (Nk(03)) =~ S5,

3.3. The semigroups Ni(Ma2)

Consider the semigroup My = {a,a?,a® | a* = a®}. The semigroup
N3(Mg2) contains 11 elements while the semigroups Ny (Mg 2) for k£ > 3
have 10 elements.

In the Cayley Table 3 for Nj(Mss) we denote by a’ the principal
ultrafilter generated by {a'} and introduce the notations

’Z = ’g - <{ax’ay}>, Vg = {F - M272 : |F‘ >2,a" € F}v O= {MZQ}'
In these notations
Nk(MQ,Q) = {a> a27 a37 |%7 ’:{)7 |%a \/17 \/2, \/37 O}

for kK > 3 and NQ(MZQ) = Nk(Mzg) U {A}

Let 1 € Aut (Ng(Mzs)). Then 9(a’) = a’ for i € {2,3} according to
proof of Theorem 3.4. Since |3 is the unique idempotent in Ni(Mas2) \
Ms 2, we conclude that 9(]3) = [3.

Consider the semigroups Ny (Ma2) = {a,a?, a3, 12,13, [3, V1, V2, V3, O}
for k> 3. Let X = {a,|3,V1,V3}, Y ={]2, Vo, O} and 7 € X, y € Y. As-
sume that $(y) = 2 € X. Then (y ) = $([3) = 3 and $(y)  $(y) =
x % x = a® which contradicts that ¢ is an automorphism. Therefore,
Y(z) € Xand ¥(y) € Y for any z € X, y € Y.
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* a | a? | a® ’% ‘:f |§ V1| Vo | V3 O A
A EEERERERERAE
BB BB B{B]B|BIB|B|B
1 2 2 2 2 2 2 2 2 2 2 2
e o [ [ [ o [ || 1|
BB IBIBIBIB]B[BIB|B|B
2 2 2 2 2 2 2 2 2 2 2 2
vi e [ [ | B ]e [ B ] | B« |
Va [ BIBIBIBIBIBIBIB|IB]BE|B
vo | [ [ | ] e [ B | | B |« |
OJB[BIBIBIBIBIB]B]B|E]IB
NEEENENENGareG

Table 3: The Cayley table for the semigroups N (Mg 2)

Analyzing the Cayley Table 3 for the semigroups Ni(Mg2) one can
establish that the semigroups Ni(Mg2) are commutative and x; * s =
T xS, Y1 *8 = Y2 x8§, 1 *xY| = T2 *xY2, T1 *To = a2, Y1 * Y2 = ‘% for
any 1,72 € X, y1,y2 € Y, s € Mas. Consequently, each permutation of
X and each permutation of Y define the automorphism of the semigroup
Nji(Mg3). Therefore, Aut (Ni(Mga2)) = Sx x Sy =2 Sy x S3 for k > 3.

Consider the semigroup No(Ma) = Nip(Ma) U{A}. Let X' = XU
{A}. By the same arguments Aut (Na(Mg2)) = Sxr x Sy = S5 x Ss.

3.4. The semigroups N;(Ms)

Consider the semigroup M3; = {a,a?a® | a* = a®}. In Cayley
Table 4 for the semigroups Ny (M3 1) we use the similar notations as for
the semigroups Ni(Ma2).

Let 1 € Aut(Nk(M31)). Then v(a’) = @’ for i € {1,2,3} according
to Proposition 3.2.

Consider the semigroups Ny(M3s1) = {a,a? a3, |3, 3,13, V1, V2, V3, O}
for k> 3. Let X = {2,[3,v1,O} and Y = {Va, V3}.

We claim that 1 ([3) = |3. Assume that ¥(|3) = z € X. Then 1 (a *
3) = ¥(a®) = a® and ¥(a) * ¥(]3) = axz = |3, and we arrive to a
contradiction with ¢ € Aut(Ng(Ms1)). In the same way assumming
that $() = y € ¥ we have p(a + [}) = p(J3) = y but 1(a) * p() =
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* a | a? | a® |% "{f B V1| Vo | V3 O A
[l @ BR8] 8]

S
[N
S
w
s}
w
S
w
s}
w
S
w
s}
w
s}
w
S
w
S|
w
s}
w
s}
w

P B|e? e BB ]3]|E a8 |d ][ ]a
BB |e | BB ]3| B|d |||
Blad|ad|a®|ad|a®|ad|ad | ad|a®|a®| a

Vo || @ ad |l a®|a?|ad|add]| a a® | ad | ad | a®
Vs adlad|ad|ad|a®|ad|ad|ad ||| a?
O la|a ]R3 B o]
Allad|ad|a®|a®|a®]a®|a®|a®]a®|a®|ad

Table 4: The Cayley table for the semigroups Ni(Ms 1)

ax1(|?) ¢ Y. These contradictions show that ¥(|3) = [3.

Then in the same way as for the semigroups Ni(Mg2) we establish
that Aut (Nk(M;),’l)) = Sx x Sy =254 x 5y for k> 3.

Consider the semigroup No(M3 1) = Np(Ms 1) U{A}. Let Y =YU
{A}. By the same arguments Aut (Na(Ms 1)) = Sx x Syr = Sy x Ss.

4. The automorphism groups of the semigroups N.(Ox),
Nk(LOX), Nk<ROx), Nk(AOx) and Nk((OX>+O)

A semigroup S is said to be a left (right) zero semigroup if ab = a
(ab = b) for any a,b € S. By LOx and ROx we denote the left zero
semigroup and the right zero semigroup on a set X, respectively. If X is
finite of cardinality | X| = n, then instead of LOx and ROx we use LO,,
and RO, respectively.

Proposition 4.1. If S is a left (right) zero semigroup, then for each
k € N\ {1} the extension Ni(S) is a left (right) zero semigroup as well.

Proof. Let S be a left zero semigroup. Then
E*M:<Ua*Ma:LeL‘, {Ma}aeLCM>:<U{a}:Le£>:£
acl acL

for any £, M € Ni(S). Therefore, Ni(S) is a left zero semigroup as well.
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For a right zero semigroup the proof is similar. O

Proposition 4.2. If X is a left zero semigroup or a right zero semigroup,
then for each k € N\ {1}, Aut (Ny(X)) is isomorphic to the symmetric
group Sy, (x)-

Proof. In Proposition 4.1 it was shown that the extensions Ni(S) of a
left (right) zero semigroup S are left (right) zero semigroups as well.
Each permutation on a left (right) zero semigroup is an automorphism.
Indeed, ¢(z+y) = b(x) = ¢ () *¥(y) and Y (z*y) = P(y) = (x) *(y)
for any elements x and y of the left zero semigroup and the right zero
semigroup, respectively. Therefore, Aut (Ng(X)) = Sy, (x)- O

Using the results of Table 1 and Proposition 4.2 in Table 5 we present
the automorphism groups of the semigroups Ny(LO,) and
Ni(RO,,) for k € {2,3,4} and n < 5.

n | Aut(Na(LO»)) | Aut(Ns(LO,)) | Aut (N4(LO,.))
1 4 Cq Ch
2 S3 Ss S3
3 S11 S10 S1o
4 Sso Ss4 S53
5 S2645 S762 Ses7

Table 5: The automorphism groups of the semigroups N (LO,,) for k €
{2,3,4} and n <5

A semigroup S is called a null semigroup if there exists an element
z € S such that xy = 2z for any z,y € S. In this case the element z is
the zero of S. All null semigroups on the same set are isomorphic. By
Ox we denote a null semigroup on a set X. If X is finite of cardinality
| X| = n, then instead of Ox we use O,.

Proposition 4.3. If S is a null semigroup, then for each k € N\ {1}
the extension Ni(S) is a null semigroup as well.

Proof. Let S be a null semigroup. Then there exists z € S such that
xy = z for all x,y € S. Therefore,

/L*M:<Ua*Ma:Le£, {Ma}aeLcM>

acl

:<U{z}:Le£, {Ma}aeLCM>:z

a€l
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for any £, M € Ni(S). Consequently, Ni(.5) is a null semigroup with the
zero z € S C Ni(S). O

Since Ni(O1) = Oj, the automorphism groups of the semigroups
Ni(01) are trivial. In the following proposition we describe the auto-
morphism group of the semigroups Ni(Ox) on a set X of cardinality
| X| > 2.

Proposition 4.4. Let z be the zero of the null semigroup Ox on a set
X of cardinality |X| > 2. For each k € N\ {1} the automorphism
group of the semigroup Ni(Ox) is isomorphic to the symmetric group

SNe(Ox)\{=}

Proof. In Proposition 4.3 it was proved that the semigroups Ny(Ox)
are null semigroups with the zero z. Taking into account that z is the
zero of the semigroups Ni(Ox), we conclude that ¢(z) = z for any
Y € Aut (Ni(Ox)). Each permutation on the set Ni(Ox) \ {z} defines
an automorphism. Indeed, ¥(z * y) = z = ¥ (x) * ¥ (y) for any elements
T,y € Nk(Ox) Therefore, Aut (Nk(OX)) = SNk(OX)\{z}' ]

Using the results of Table 1 and Proposition 4.4 in Table 6 we present
the automorphism groups of the semigroups N (O,,) for k € {2,3,4} and
n < 5.

n | Aut (N2(0,)) | Attt (Ns(On)) | Aut (N2(O,))
1 q Cq C1
2 Cy Cy Cy
3 S10 Sy So
4 S Ss3 Ss2
5 So644 S761 Ses6

Table 6: The automorphism groups of the semigroups Ny (O,,) for k €
{2,3,4} and n <5

A semigroup S is said to be an almost null semigroup if there exist
the distinct elements a,z € S such that aa = a and xy = z for any
(z,y) € S x S\ {(a,a)}. In this case the element z is the zero of S and
a is the unique idempotent in S\ {z}. All almost null semigroups on the
same set are isomorphic. By AOx we denote an almost null semigroup
on a set X. If X is finite of cardinality | X| = n, then instead of AOx we
use AO,.
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It easy to check that the automorphism groups of the semigroups
Ni(AO3) are trivial. In the following theorem we describe the auto-
morphism groups of the semigroups N (AOx) on a set X of cardinality
| X| > 3.

Theorem 4.5. Let z be the zero of the almost null semigroup AOx on
a set X of cardinality | X| >3, A={L € Ny(OAx) | X\ {a} € L}, B=
Ni(OAx)\ A ={L € N,(OAx) | a € L for any L € L}, where a is the
idempotent in OAx \ {z}. For each k € N\ {1} the automorphism group
of the semigroup Ni.(AOx) is isomorphic to the group Sp\ (21 X Sg\{a,|z}-

Proof. Let A€ A, L € N (OAx). Then AxL > (X\{a})-L={z} =L-
(X\{a}) € LxAfor any L € L, and hence the linkedness of AL and LA
implies that A« £L =L A=z for any A € A, L € N (OAx). Consider
any (B1,B2) € B x B\ {(a,a)}. Taking into account that a € By N By
and |By| > 2 or |By| > 2 for any By € By, Bs € By, we conclude that
By x By = <U9E€B1 x*x By : By € Bi, {Bg}aen, C 32> =z

Consequently, the semigroups Ni(AOx) contain three idempotents:
a, z and |Z. Taking into account that z is the zero of Ni(OAx) and
the set of idempotents of a semigroup is preserved by automorphisms,
we conclude that 1(z) = z, and hence ¥({a,|2}) = {a,|%} for any ¥ €
Aut (Np(AOx). Since ([3) = (= % ) = (=) * (3) € {2 * |35 *
z} = {|§}, we conclude ¥(|§) = |5, and hence 9(z) = z for any ¢ €
Aut (Nu((Ox) ™)),

Let us show that ¢ (A\{z}) = A\{z} and ¥(B\{a,|2}) = B\{a,|Z} for
any ¢ € Aut (Ny(AOx)). Assume that ¢(B) = A for some A € A\ {z},
B e B\{a,|2}. Then (BxB) =1(|Z) = |Z but (B)*x¢(B) = Ax A= z.
This contradiction show that ¢/(A) € A\ {z}, ¥(B) € B\ {qa, |2} for any
AeA\{z}, BeB)\ {a, |2} and ¥ € Aut(N(AOx)).

Each permutation on the set A\ {z} and each permutation on the set
B\ {a, |} define the automorphism v : Ny(AOx) — Ni(AOx). Indeed,
Plaxa) =Pla) =a=axa=1(a)*P(a), Y(A*x L) = P(z) = z =
DAY * 9(L), DL+ A) = 9(=) = 2 = P(L) * Y(A) for any A € A,
L € Ni(OAx), and ¢(By % Bz2) = ¢(|7) = [§ = 1(B1) * ¢(Bz2) for any any
(31,62) EBxB \ {(a, a)}.

Therefore, Aut (Ni(OAx)) = SA\{z} X SIB%\{a,\g}' ]

Let us note that for a subsemigroup 7' of a semigroup S the map
i@ Npg(T) — Ni(S),i: A —-{L C S|L DA€ A}, is injective
homomophism, and thus we can identify the semigroup Ny (7T') with the
subsemigroup i(Ny (7)) C Ni(S). Therefore, the set A from Theorem 4.5
can be identified with the subsemigroup Ny (X \ {a}) of the semigroup
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Ni(X). Consequently, for finite almost null semigroups we have the fol-
lowing corollary.

Corollary 4.6. For each k > 2 and n > 3 the automorphism group
of the semigroup Ni(OA,) is isomorphic to the group S|y, (n—1)-1 X
S| Nk (n) |- | Ny (n—1)|-3-

Using the results of Table 1 and Corollary 4.6 in Table 7 we present

the automorphism groups of the semigroups Ni(AO,,) for k € {2,3,4}
and n € {2,3,4,5}.

n | Aut (Na(AOy)) | Aut (N3(AOy)) | Aut (N4(AO,))
2 4 4 4

3 Cy x S5 Cy x Sy Cy x Sy

4 S10 X See So X Sy1 Sg X S40

51  Srg x Sas62 S53 X S705 Ss2 X Se31

Table 7: The automorphism groups of the semigroups Ny (AO,,) for k €
{2,3,4} and n € {2,3,4,5}

Let S be a semigroup and 0 ¢ S. The binary operation defined on S
can be extended to S U {0} putting 0s = s0 =0 for all s € SU{0}. The
notation ST denotes a semigroup S U {0} obtained from S by adjoining
the extra zero 0 (regardless of whether S has or has not the zero).

Theorem 4.7. Let z be the zero of the null semigroup Ox on a set X of
cardinality | X| > 2, A = {L£ € N,((Ox)™) | X € L}, B = Nx((Ox)™)\
A ={L € Ne((Ox)*) | 0 € L for any L € L}, where 0 is the extra
zero adjointed to Ox. For each k > 2 the automorphism group of the
semigroup Ni,((Ox)T0) is isomorphic to the group Sav{zr X SB\{0,)z}-

Proof. Tt is easy to see that 0 is the zero of Ni((Ox)*?).

Let A1, A2 € A. Then A; x Ay 3 X - X = {z}. The linkedness
of Ay * Ay implies that A; x Ay = z for any Ay, A2 € A. Consider
any B € B\ {0}, £ € Ni((Ox)*?) \ {0}. Taking into account that
0 € Band |B|] > 2, |L| >2forany B € B, L € L, we conclude that

Bx L = xx Ly : B e B, {Liteep C L) =|5 and LxB =
zeB 0

(Uper @+ Be i L€ L, {Bulacr € B) = ;.
Consequently, the semigroup Ni((Ox)™") contains three idempo-
tents: 0, z and |3. Taking into account that 0 is the zero of Nj((Ox)™?)
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and the set of idempotents of a semigroup is preserved by automor-
phisms, we conclude that ¢(0) = 0, and hence ({2, |§}) = {z,|§} for
any ¥ € Aut (Ny((Ox)*)). Since () = 6(z * [5) = 1(2) * ¥(§) €
{z=1§, 5+ 2} = {|§}, we conclude ¥(|§) = |§, and hence ¢(z) = z for any
(VNS Aut (Nk((Ox)+0))

Let us show that ¢(A\{z}) = A\{z} and ¢ (B\{0, |§}) = B\{0, |§} for
any ¢ € Aut (Ni((Ox)™)). Assume that 1)(A) = B for some A € A\{z},
B e B\{0,|§}. Then py(AxA) =1(z) =z but (A)*(A) = BxB = 3.
This contradiction show that ¢¥(A) € A\ {z}, ¥(B) € B\ {0, |5} for any
A€ A\ {z}, BeB\{0,]§} and ¢ € Aut(N((Ox)*?)).

Each permutation on the set A \ {z} and each permutation on the
set B\ {0, |z} define the automorphism 1 : N((Ox)™®) — Ni((Ox)™0).
Indeed, (0% L) = ¥(0) = 0 = 0x(L) = P (0) x (L), (L 0) = 1(0) =
0 =9(L) %0 = (L) *¥(0), P(Ar *x A2) = 9(2) = z = (A1) * P(As)
for any £ € Ni((Ox)™), A1, Az € A, and ¥(B* L) = ¢(]) = |§ =
(B) * (L), ¥(LxB) = ¢(|§) = [§ = ¥(£) * (B) for any B € B\ {0},
L € Np((0x)*9)\ {0}

Therefore, Aut (Nk((Ox)JrO)) = SA\{Z} X SB\{(]:‘S}' O

The set A from Theorem 4.7 can be identified with the subsemigroup
Ni(Ox) of the semigroup Ny ((Ox)*?). Consequently, for finite null semi-
groups O,, we have the following corollary.

Corollary 4.8. For each k > 2 and n > 2 the automorphism group
of the semigroup Ni((O,)*?) is isomorphic to the group S|N(On)|-1 X
SNk ((On) +0) = N&(On) |3+

Using the results of Table 1 and Corollary 4.8 in Table 8 we present
the automorphism groups of the semigroups N, ((O,,)™)) for k € {2, 3,4}
and n < 4.

n | Aut(No((0,)*)) | Aut(N3((0n)*0)) | Aut(Na((0,)*))
1 4 Cq C1

2 Cy x S5 Cy x Sy Cy x Sy

3 S10 X Se6 Sg x Sy Sg x Sy0

4 St9 X S2562 S53 X S705 Ss2 X Se31

Table 8: The automorphism groups of the semigroups Ny ((O,,)™?)) for

ke {2,3,4} and n <4
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