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Abstract 

Given a finite monogenic semigroup S, we study the minimal ideal, the center, 
left cancelable, and right cancelable elements of the extension ( )SN ω<  

consisting of centered upfamilies on S and characterize monogenic semigroups 
whose extensions are commutative. 

1. Introduction 

This paper is devoted to describing the structure of extensions 
( )SN ω<  of monogenic semigroups S. The thorough study of various 

extensions of semigroups was started in [11] and continued in [1]-[8], 
[12]-[15]. The largest among these extensions is the semigroup ( )Sv  of all 

upfamilies on S. A family M  of nonempty subsets of a set X is called an 
upfamily if for each set M∈A  any subset AB ⊃  of X belongs to .M  
Each family B  of nonempty subsets of X generates the upfamily 



VOLODYMYR GAVRYLKIV 72

( ){ }.:: ABBXABXB ⊂∈∃⊂=∈⊂ BB  An upfamily F  that is 

closed under taking finite intersections is called a filter. A filter U  is 
called an ultrafilter if FU =  for any filter F  containing .U  The family 
( )Xβ  of all ultrafilters on a set X is called the Stone-Čech compactification 

of X (see [16], [19]). An ultrafilter { } ,x  generated by a singleton { },x  

,Xx ∈  is called principal. Identifying each point Xx ∈  with the principal 

ultrafilter { }x  we obtain the inclusions ( ) ⊂β⊂ XX ( ).Xv  It was shown 

in [11] that any associative binary operation SSS →×∗ :  can be 
extended to an associative binary operation ( ) ( ) ( )SvSvSv →×:D  by the 

formula 

{ } ,,: MLML ⊂∈∗= ∈
∈

Laaa
La

MLMa∪D  

for upfamilies ( )., Sv∈ML  In this case, the Stone-Čech compactification 
( )Sβ  is a subsemigroup of the semigroup ( ).Sv  The semigroup ( )Sv  

contains many other important extensions of S. In particular, it contains 
the semigroup ( )SN ω<  of centered upfamilies. An upfamily ( )Sv∈L  is 

called centered if 0/≠F∩  for any finite subfamily .LF ⊂  

Each map YXf →:  induces the map 

( ) ( ) ( ) ,::,: MM ∈⊂→ ω<ω<ω<ω< MYMffNYNXNfN 6  

see [10]. 

A nonempty subset I of a semigroup ( )∗,S  is called an ideal (resp.,     

a right ideal, a left ideal) if ( ).,.,resp IISISIIISSI ⊂∗⊂∗⊂∗∗ ∪  

An element z of a semigroup ( )∗,S  is called a zero (resp., a left zero,         

a right zero) in S if ( )zzazazzazza =∗=∗=∗=∗ ,.,resp  for any 

.Sa ∈  It is clear that Sz ∈  is a zero (resp., a left zero, a right zero) in S 
if and only if the singleton { }z  is an ideal (resp., a right ideal, a left ideal) 
in S. An ideal SI ⊂  is called minimal if any ideal of S that lies in I 
coincides with I. By analogy, we define minimal left and minimal right 
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ideals of S. The union ( )SK  of all minimal left (right) ideals of S 
coincides with the minimal ideal of S, see [16, Theorem 2.8]. A semigroup 
( )∗,S  is said to be a right zero semigroup if bba =∗  for any ., Sba ∈  A 

map TS →ϕ :  between semigroups ( )∗,S  and ( )D,T  is called a 
homomorphism if ( ) ( ) ( )baba ϕϕ=∗ϕ D  for any ., Sba ∈  A 

homomorphism IS →ϕ :  from a semigroup S onto an ideal SI ⊂  is 

called a retraction if ( ) aa =ϕ  for any element .Ia ∈  An element a of a 
semigroup S is called left cancelable (resp., right cancelable) if for any 
elements Syx ∈,  the equality ( )yaxaayax == .,resp  implies .yx =  
This is equivalent to saying that the left (resp., right) shift ,: SSla →  

( )axxrSSrxaxl aaa ∗→∗ 66 :,:.,resp:  is injective. A semigroup 
S is called left (right) cancellative if all elements of S are left (right) 
cancelable. A semigroup that is both left and right cancellative is said to 
be cancellative. By definition, the center of a semigroup S is the set 
( ) ( ){ }.: assaSsSaSC =∈∀∈=  

A semigroup { } N∈= n
naa  generated by a single element a is called 

monogenic or cyclic. If a monogenic semigroup is infinite, then it is 
isomorphic to the additive semigroup .N  A finite monogenic semigroup 

aS =  also has very simple structure (see [9]). There are positive 
integer numbers r and m called the index and the period of S such that 

● { }12 ,,, −+= rmaaaS …  and ;1 Srm =−+  

● for any ω∈ji,  the equality jrir aa ++ =  holds if and only if ji ≡  
mod m; 

● { }11 ,,, −++= rmrr
m aaaC …  is the minimal ideal, a cyclic and 

maximal subgroup of S with the neutral element ,m
n Cae ∈=  where m 

divides n. 

From now on we denote by mrC ,  a finite monogenic semigroup of 

index r and period m, and maximal subgroup of mrC ,  is denoted by .mC  
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2. Homomorphisms, Zeros and Minimal Ideals 

Proposition 2.1. For any homomorphism TS →ϕ :  between 

semigroups ( )1, ∗S  and ( )2, ∗T  the induced map ( ) →ϕ ω<ω< SNN :  

( )TN ω<  is a homomorphism of the semigroups ( ( ) )1, DSN ω<  and 

( ( ) )., 2DTN ω<  

Proof. Given two centered upfamilies ( )SN ω<∈ML,  observe that 

( ) ( { } )MLML ⊂∈∗ϕ=ϕ ∈
∈

ω<ω< Lxxx
Lx

MLMxNN ,:11 ∪D  

( ) { } ML ⊂∈∗ϕ= ∈
∈

Lxxx
Lx

MLMx ,:1∪  

( ) ( ) { } ML ⊂∈ϕ∗ϕ= ∈
∈

Lxxx
Lx

MLMx ,:2∪  

( )
( ) { ( )} ( ) ( )ML ϕ⊂ϕ∈ϕ∗= ω<ϕ∈

ϕ∈

NMLMx Lxxx
Lx

,:2∪  

( ) ( ) ( ) ( ).:: 22 MLML ϕϕ=∈ϕ∈ϕ= ω<ω< NNMMLL DD  

 

Let us note that for a subsemigroup T of a semigroup S the 
homomorphism ( ) ( ) SiSNTNi AA →→ ω<ω< :,:  is injective, and 

thus we can identify the semigroup ( )TN ω<  with the subsemigroup 

( ( )) ( ).SNTNi ω<ω< ⊂  Therefore, for each family B  of nonempty subsets 

of T, we identify the upfamilies 

( ){ } ( ),| TNABBTAT ω<∈⊂∈∃∈= BB  

and 

( ){ } ( ).| SNABBSAS ω<∈⊂∈∃∈= BB  
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Lemma 2.2. Let I be an ideal of a semigroup S. If a map IS →ϕ :  

is a retraction, then the map ( ) ( )INSNN ω<ω<ω< →ϕ :  is a retraction 

too. 

Proof. Indeed, let ( ) ( ),, SNIN ω<ω< ∈∈ MA  then =MA D  

{ } ,:,,: AMA ∈∗=⊂⊂∈∗
∈∈∈

AMaMIAAMa aAaAaaaAa ∪∪  

{ } ( )., INIMaM aAaAaa ω<∈∈ ∈⊂∗⊂ ∪M  By analogy ( ),IN ω<∈AM D  

and therefore ( )IN ω<  is an ideal of the semigroup ( ).SN ω<  If 

( ),IN ω<∈A  then ( ) ( ) AAA ∈⊂=∈⊂ϕ=ϕω< AIAAAIAAN ,:,:  

{ } AA =⊂∈= IAA :  and hence ϕω<N  is a retraction.   

Let e be the neutral element of the maximal subgroup mC  of a 

monogenic semigroup .,mrC  

Lemma 2.3. The map ( ) exxCC mmr =ϕ→ϕ ,: ,  is a retraction and 

( ) xyyx =ϕ  for any mrCx ,∈  and .mCy ∈  

Proof. Since the semigroup mC  is an ideal of the semigroup ,,mrC  

( ) .mCexx ∈=ϕ  Consequently, ( ) ( ) ( )yxexeyeexyexyxy ϕϕ====ϕ  for 

any mrCyx ,, ∈  and ( ) xexx ==ϕ  for .mCx ∈  Hence the map 

mmr CC →ϕ ,:  is a retraction. Further for any mrCx ,∈  and ,mCy ∈  

we have that ,mCxy ∈  and therefore ( ) .xyxy =ϕ  On the other hand, 

( ) ( ) ( ) ( ) ,yxyxxy ϕ=ϕϕ=ϕ  since .mCy ∈    

Proposition 2.4. For each finite monogenic semigroup ,,mrC  the 

centered upfamily mC  is the zero of the semigroup ( ).,mrCN ω<  

Proof. Let mmr CC →ϕ ,:  be the retraction from Lemma 2.3. Since 

( ) mmm CCxxCxF =ϕ=⊃  for each mrCx ,∈  and ,mCF ∈  then 

mCxF ∈  and mC  is a right zero according to Proposition 1 from [15]. 
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We shall show that mC  is a left zero, that is mm CC =AD  for 

each ( ).,mrCN ω<∈A  Since ( ) mmm CACAC =ϕ=  for ,A∈A  then 

.ADmm CC ⊂  If ,ADmCM ∈  then { } ., A⊂⊃ ∈∈ mm CgggCg AgAM ∪  

Since A  is a centered upfamily and mC  is finite, then there exists 

.gCg Aa
m∩ ∈

∈  Therefore, { } ( ) mmmCg CaCaCagM
m

=ϕ==⊃
∈∪  

and .mCM ∈    

Since an element z of a semigroup S is a zero in S if and only if the 
singleton { }z  is an ideal in S, Proposition 2.4 implies the following: 

Proposition 2.5. The minimal ideal of the semigroup ( )mrCN ,ω<  is 

singleton, that is ( ( )) { }., mmr CCNK =ω<  

3. Commutativity and the Center 

Theorem 3.1. A finite monogenic semigroup { ,,,,, …… r
mr aaC =  

}rmrrm aaa =+−+ 1  of order 1−+ rm  has commutative extension 

( )mrCN ,ω<  if and only if 

( ) ( ) ( ) ( ) ( ) ( ){ }.1,3,2,2,1,2,2,1,1,1, ∈mr  

Proof. It was proved in the paper [15] that the extension ( )GN ω<  of 

a group G is commutative if and only if .2≤G  Since for ,2>m  the 

extension ( )mrCN ,ω<  contains a noncommutative subsemigroup 

( ),mCN ω<  then ( )mrCN ,ω<  is not commutative. So it is sufficient to 

consider only finite monogenic semigroups of period .2≤m  

If index ,1=r  then mrC ,  is a cyclic group of order m, and thus for 

,1=r  the semigroup ( )mrCN ,ω<  is commutative if and only if .2≤m  
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If { },2,1,2 ∈= mr  then the product xy  of any two elements of mrC ,  

is contained in the maximal subgroup ,mCxy ∈  and thus ( ) =ϕ= xyxy  

( ) ( ),yx ϕϕ  where mmr CC →ϕ ,:  is the retraction .: ess →ϕ  Since 

extensions ( )GN ω<  of groups G of order 1 and 2 are commutative and the 

map ( ) ( )mmr CNCNN ω<ω<ω< →ϕ ,:  is a retraction according to 

Proposition 2.2, then 

( ) ( ) ( ) ( ) ,ABABBAB�A DDDD =ϕϕ=ϕϕ= ω<ω<ω<ω< NNNN  

for any ( )., ,mrCN ω<∈B�A  Consequently, the semigroups ( )1,2CN ω<  

and ( )2,2CN ω<  are commutative. 

Consider the semigroup { }.:,, 3432
1,3 aaaaaC ==  The 

semigroup ( )1,3CN ω<  contains 10 elements. 

Let us introduce the notation 

{ } { }.,2:,, 1,3 FxFCFyx x
y
x

x
y ∈≥⊂===   

Also the principal ultrafilter { }e  and the upfamily { }1,3C  are identified 

with e and ,1,3C  respectively. 

The following Cayley table implies the commutativity of ( ).1,3CN ω<  
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D  a 2a  3a  2a
a  

3a
a  

3
2

a
a

 a  2a  3a  1,3C  

a 2a  3a  3a  3
2

a
a

 
3
2

a
a

 3a  3
2

a
a

 3a  3a  3
2

a
a

 

2a  3a  3a  3a  3a  3a  3a  3a  3a  3a  3a  

3a  3a  3a  3a  3a  3a  3a  3a  3a  3a  3a  

2a
a  

3
2

a
a

 3a  3a  3
2

a
a

 
3
2

a
a

 3a  3
2

a
a

 3a  3a  3
2

a
a

 

3a
a  

3
2

a
a

 3a  3a  3
2

a
a

 
3
2

a
a

 3a  3
2

a
a

 3a  3a  3
2

a
a

 

3
2

a
a

 3a  3a  3a  3a  3a  3a  3a  3a  3a  3a  

a  3
2

a
a

 3a  3a  3
2

a
a

 
3
2

a
a

 3a  3
2

a
a

 3a  3a  3
2

a
a

 

2a  3a  3a  3a  3a  3a  3a  3a  3a  3a  3a  

3a  3a  3a  3a  3a  3a  3a  3a  3a  3a  3a  

1,3C  3
2

a
a

 3a  3a  3
2

a
a

 
3
2

a
a

 3a  3
2

a
a

 3a  3a  3
2

a
a

 

Consider the semigroup { }35432
2,3 :,,, aaaaaaC ==  and centered 

upfamilies { } { } { }322 ,,,,, aaaaaa == BA  of the semigroup 

( ).2,3CN ω<  Since 

{ } { } ,,,, 43232 ABBA DD =≠= aaaaa  

then the semigroup ( )2,3CN ω<  is not commutative. 

Let .4≥r  Consider centered upfamilies { }2, aa=A  and { ,a=B  

} { } .,, 322 aaa  We have that { } { } ,,, 32233 BA D∪ ∈∈/ aaaaaaa  but 

Fa ∈3  for any .AB D∈F  Consequently, ABBA DD ≠  and for each 
4≥r  a semigroup ( )mrCN ,ω<  is not commutative.  
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Let us study the center of the semigroup ( ).,mrCN ω<  Since 

monogenic semigroups are commutative, then the formula 

{ } MLML ⊂∈∗= ∈
∈

Laaa
La

MLMa ,:∪D  

implies that the center ( ( ))mrCNC ,ω<  of a semigroup ( )mrCN ,ω<  

contains all principal ultrafilters. It was shown in [15] that ( ( ))GNC ω<  

{ }{ } { }GGgg ∪∈= :  for a finite Abelian group G, that is the center 

( ( ))GNC ω<  of the semigroup ( )GN ω<  is isomorphic to .0G  Therefore, 

( ( )) ( ) .0
mm CCNC ≅ω<  

Lemma 3.2. Let IS →ϕ :  be a retraction of a semigroup S on an 

ideal I. If ( ),SCa ∈  then ( ) ( ).ICa ∈ϕ  

Proof. Indeed, for any ,Ix ∈  we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).axaxxaaxxaxa ϕ=ϕϕ=ϕ=ϕ=ϕϕ=ϕ  

 

Theorem 3.3. For each finite monogenic semigroup ,,mrC  the center 

of the semigroup ( )mrCN ,ω<  contains centered upfamilies that are neither 

principal ultrafilters nor the zero of ( ).,mrCN ω<  The center of the 

semigroup ( )mCN ,2ω<  contains 5+m  elements. 

Proof. Since by Lemmas 2.3 and 2.2 the maps ,: , mmr CC →ϕ  

( ) exx =ϕ  and ( ) ( )mmr CNCNN ω<ω<ω< →ϕ ,:  are retractions and 

mC  is the zero of ( )mrCN ,ω<  and ( ),mCN ω<  then Lemma 3.2 implies 

that 

( ( )) ( ) ({ { } } { }).:1
, mmmr CCggNCNC ∪∈ϕ⊂ −

ω<ω<  
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Let a be a generator of a semigroup .,mrC  Consider elements 1−ra  and 

( ) .111 −−− ≠=ϕ rrr aeaa  We claim that centered upfamilies { ,1−= raA  

} { } ,, 11
m

rr Caea ∪−− =B  and { } { }11 \ −−= r
m

r eaCa ∪C  are central 

elements of the semigroup ( ).,mrCN ω<  

Indeed, since { }11 ,, −+− =∈ mrr
m

r aaCxa …  for each ,,mrCx ∈  

then ( ) ( ) ( ).111 xaxaxa rrr ϕϕ=ϕ= −−−  On the other hand, since mC  is an 

ideal of ,,mrC  then ( ) m
r Cxa ∈ϕ −1  and 

( ) ( ( ) ) ( ( )) ( ) ( ) ( ).1111 xaxaxaxa rrrr ϕϕ=ϕϕϕ=ϕϕ=ϕ −−−−  

Consequently, ( ) xaxa rr 11 −− =ϕ  for any .,mrCx ∈  Therefore, 

{ ( )} { ( )} ,11 AMMMMA DDDD =ϕ=ϕ= −− rr aa  

,BMMMMB DDDD === mm CC  

,CMMMMC DDDD === mm CC  

for any ( )mrCN ,ω<∈M  and thus ( ( )).,, ,mrCNC ω<∈CBA  

Consider the finite monogenic semigroup { 12
,2 ,,, += m
m aaaC …  

}.22 aam =+  In this case, mCxy ∈  for any mCyx ,2, ∈  and thus  

( ) ( )BABA ϕϕ= ω<ω< NN DD  for any ( )., ,2 mCN ω<∈BA  It is easy to see 

that mae =  is the identity element of the maximal subgroup 

{ }.\,2 aCC mm =  Since ( ) ,1+===ϕ mm aaaeaa  then 1+ma  is the 

unique element whose preimage under retraction mm CC →ϕ ,2:  is not 

a singleton. Therefore, 

( ( ) { { } { } { } }}.:,\,,,, ,2
1

,2,2
1

,2 m
m

mmm
m

m CggaCCCaaCNC ∈= ++
ω<  

 
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Problem 3.4. Given a monogenic semigroup ,2,, >rC mr  describe 

the center of the semigroup ( ).,mrCN ω<  

4. Right and Left Cancelable Elements 

In this section, we shall detect right and left cancelable elements of 
extensions ( )mrCN ,ω<  of finite monogenic semigroups .,mrC  

Proposition 4.1. The extension ( )mrCN ,ω<  has (left, right) cancelable 

elements if and only if the index r of a monogenic semigroup mrC ,  is equal 

to 1. 

Proof. Let 1>r  and a be the generator of a semigroup .,mrC  

Consider the map ,:,: , exxCC mmr →ϕ→ϕ  where e is the neutral 

element of the cyclic group .mC  As we showed in the proof of Theorem 3.3, 

( ) xaxa rr 11 −− =ϕ  for any .,mrCx ∈  

Let M  be a centered upfamily on a semigroup .,mrC  Then we obtain 

{ } { } { } { } MMM ∈=⊂∗= −
∈∈

− −− MMaMMaa r
aaaaaa

r rr :: 11 11∪D  

( ) { ( )} MM D11 : −− ϕ=∈ϕ= rr aMMa  and { } =−1raDM  

{ } ( ) MMM ∈ϕ=∈=∈∗ −−−
∈

MaMMMaMaa rrr
Ma ::: 111∪  

{ ( )} .1−ϕ= raDM  Since ( ),11 −− ϕ≠ rr aa  the centered upfamily M  is 

neither left nor right cancelable. 

If ,1=r  then a monogenic semigroup mm CC =,1  is a group. Let e be 

the neutral element of the group .mC  Then { } { }ee DD MMM ==  for 

any ( ),mCN ω<∈M  and equalities { } { } { } { } YY DDDD eeee =χ=χ ,  

imply that .Y=χ  Consequently, the principal ultrafilter { }e  is a 

cancelable element of the semigroup ( ).,1 mCN ω<   
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If G is a group, then the formula 

{ } MLML ⊂∈∗= ∈
∈

Laaa
La

MLMa ,:∪D  

implies that the product ML D  of any two centered upfamilies L  and 
M  is a principal ultrafilter if and only if both L  and M  are principal 
ultrafilters. Therefore, we deduce the following proposition: 

Proposition 4.2. For a group G, the set ( ) { { } }GggGN ∈ω< :\  is 

an ideal in ( ).GN ω<  

Lemma 4.3. A semigroup S is a left (right) cancellative semigroup if 
and only if all principal ultrafilters are left (right) cancelable elements in 
the extension ( ).SN ω<  

Proof. If an element Sa ∈  is not left (right) cancelable in the 
semigroup S, then it is clear that the principal ultrafilter generated by 
the element a is not left (right) cancelable in ( ).SN ω<  

Let S be a left (right) cancellative semigroup, Sa ∈  and 
( ) ,,, YY ≠χ∈χ ω< SN  then without loss of generality we can assume that 

Y\χ∈X  for some .χ∈X  Therefore, ( ) 0\ /≠YXS ∩  for any .Y∈Y  

Since each element of S is left (right) cancelable, then ( ) 0\ /≠aYaXS ∩  

( )( ),0\ /≠YaXaS ∩  and thus { } { } { } { }( ).aaaa DDDD YY ≠χ≠χ  

Consequently, the left { }al  ( { } )arright  shift is injective and the 

principal ultrafilter { }a  is left (right) cancelable.   

Proposition 4.4. An element ( )mCN ,1ω<∈M  is left (right) cancelable 

if and only if M  is a principal ultrafilter. 

Proof. Since in any group, in particular in the cyclic group ,,1 mC  all 

elements are cancelable, then all principal ultrafilters are cancelable in 
the extension ( )mCN ,1ω<  according to Lemma 4.3. 
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Assume that some centered upfamily ( ) { { } }mm CggCN ,1,1 :\ ∈∈ ω<M  

is left cancelable. This means that the left shift ( )mCNl ,1: ω<M  

( ) ,:,,1 AMAM D6lCN mω<→  is injective. According to Proposition 

4.2, the set ( ) { { } }mm CggCN ,1,1 :\ ∈ω<  is an ideal in ( ).,1 mCN ω<  

Consequently, ( ( )) ( ) ( ) { { } :\,1,1,1 gCNCNCNl mmm ω<ω<ω< ⊂= DMM  

}.,1 mCg ∈  Since ( )mCN ,1ω<  is finite, Ml  cannot be injective. 

For the right cancelable elements the proof is analogous.   
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