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Abstract

Given a finite monogenic semigroup S, we study the minimal ideal, the center,

left cancelable, and right cancelable elements of the extension N (S)

consisting of centered upfamilies on S and characterize monogenic semigroups
whose extensions are commutative.

1. Introduction

This paper i1s devoted to describing the structure of extensions

N_,(S) of monogenic semigroups S. The thorough study of various

extensions of semigroups was started in [11] and continued in [1]-[8],
[12]-[15]. The largest among these extensions is the semigroup v(S) of all
upfamilies on S. A family M of nonempty subsets of a set X is called an
upfamily if for each set A € M any subset B > A of X belongs to M.
Each family B of nonempty subsets of X generates the upfamily
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(BcX:BeB)={Ac X:3Be BB c A)}. An upfamily F that is
closed under taking finite intersections is called a filter. A filter U 1is
called an ultrafilter if U = F for any filter F containing U. The family
B(X) of all ultrafilters on a set X is called the Stone-Cech compactification
of X (see [16], [19]). An ultrafilter ({x}), generated by a singleton {x},
x € X, 1s called principal. Identifying each point x € X with the principal
ultrafilter ({x}) we obtain the inclusions X < B(X) < v(X). It was shown
in [11] that any associative binary operation *:SxS — S can be
extended to an associative binary operation o : v(S) x v(S) — v(S) by the

formula

£0M=<UG*MG3LEE’ {Ma}aeL CM>’

aelL

for upfamilies £, M e v(S). In this case, the Stone-Cech compactification
B(S) is a subsemigroup of the semigroup v(S). The semigroup u(S)
contains many other important extensions of S. In particular, it contains

the semigroup N_,(S) of centered upfamilies. An upfamily £ € v(S) is
called centered if ﬂ]—' # @ for any finite subfamily F < L.

Each map f : X —» Y induces the map
N_of : Noo(X) > No(Y), N_of M (f(M)cY : Me M),

see [10].

A nonempty subset I of a semigroup (S, *) is called an ideal (resp.,
a right ideal, a left ideal) if I * SUS *I < I(resp.,, I *S c I, S*1 c I).
An element z of a semigroup (S, *) is called a zero (resp., a left zero,
a right zero) in Sif a*z =z%*a = z(resp.,, z*a = z, a *z = z) for any
a € S. Itis clear that z € S is a zero (resp., a left zero, a right zero) in S
if and only if the singleton {z} is an ideal (resp., a right ideal, a left ideal)
in S. An ideal I = S is called minimal if any ideal of S that lies in [

coincides with I. By analogy, we define minimal left and minimal right
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ideals of S. The union K(S) of all minimal left (right) ideals of S

coincides with the minimal ideal of S, see [16, Theorem 2.8]. A semigroup

(S, *) is said to be a right zero semigroup if a *b = b for any a, b € S. A
map ¢:S — T between semigroups (S, *) and (7, o) is called a
homomorphism if  ¢la *b) = ¢(a)o@d) for any a,beS. A
homomorphism ¢ : S — I from a semigroup S onto an ideal I < S 1is
called a retraction if ¢(a) = a for any element a € I. An element a of a
semigroup S is called left cancelable (resp., right cancelable) if for any
elements x, y € S the equality ax = ay (resp., xa = ya) implies x = y.
This is equivalent to saying that the left (resp., right) shift [, : S — S,
ly x> axx (resp., 1, : S —> S, r, : x = x *a) is injective. A semigroup
S is called left (right) cancellative if all elements of S are left (right)
cancelable. A semigroup that is both left and right cancellative is said to

be cancellative. By definition, the center of a semigroup S is the set
C(S)={aeS:VseS (sa=as).

A semigroup (a) = {a"}, .y generated by a single element a is called

monogenic or cyclic. If a monogenic semigroup is infinite, then it is
isomorphic to the additive semigroup N. A finite monogenic semigroup

S = (a) also has very simple structure (see [9]). There are positive

integer numbers r and m called the index and the period of S such that

e S ={a, a?, ..., "N andm+r-1-= IS|;

e for any i, j € o the equality @’** = a’*/ holds if and only if i = j
mod m;

o C, ={a",d"™, ..., a™7" !} is the minimal ideal, a cyclic and

maximal subgroup of S with the neutral element e = a” e C,,, where m

m»

divides n.
From now on we denote by C, , a finite monogenic semigroup of

index r and period m, and maximal subgroup of C, ,, is denoted by C,,.
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2. Homomorphisms, Zeros and Minimal Ideals

Proposition 2.1. For any homomorphism ¢ :S — T between
semigroups (S, *) and (T, *9) the induced map N_,0: N_,(S) >
N_,(T) is a homomorphism of the semigroups (N_.,(S), ;) and
(Neo(T), 2).

Proof. Given two centered upfamilies £, M € N_,(S) observe that

N<o)(P(£ op M) = N<m(P(<Ux *1 My : Lel, {Mx }xeL < M>)
xeL

=(o(| Jx = M) Le £ (M} © M)
xeL

=((Jot)*2 o(M,): L e £, (M}, « M)
xeL

=( | x%0M,): Le £ {o(My )} or) © NewolM))
xeq(L)
=(@(L): L € L) oy (¢(M): M € M) = N_,0(L) o5 N ,0(M).
O

Let us note that for a subsemigroup 7T of a semigroup S the
homomorphism i: N_,(T) > N_,(S),i: A > (A)g is injective, and
thus we can identify the semigroup N_,(7') with the subsemigroup
(N_,(T)) € N_,(S). Therefore, for each family B of nonempty subsets
of T, we identify the upfamilies

(B)p ={AeT|3BeB(Bc A)je N_,(T),

and

(B)g =1A € S|3B e B(B c A)} € N_,(S).
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Lemma 2.2. Let I be an ideal of a semigroup S. Ifa map ¢ : S > 1
is a retraction, then the map N_, 0 : N_,(S) > N_,(I) is a retraction

too.
Proof. Indeed, let A e N_,(I), M e N_,(S), then AoM =
<Ua€Aa*Ma tAe A, Ac T, {(My},ca CM>:<UaeAa*M<1 A e A,

(Mglyen c M|, _ a*M, < T)e N o(I). By analogy Mo A e N (D),
and therefore N_,(I) is an ideal of the semigroup N_,(S). If
A e N_,(I), then N_,0(A)=(p(A): AcI,Aec A)=(A: Ac I, Ac A)
={AeA:AcI}=A and hence N_, 0 is a retraction. O

Let e be the neutral element of the maximal subgroup C,, of a

monogenic semigroup C, .

Lemma 2.3. The map ¢ : C, ,, - C,,, ¢(x) = ex is a retraction and

o(x)y = xy forany x € C, ,, and y € Cp,.

Proof. Since the semigroup C,, is an ideal of the semigroup C, ,,,
o(x) = ex € C,,. Consequently, ¢(xy) = exy = eexy = exey = ¢(x)p(y) for
any x,ye€C,, and ¢(x)=ex=x for xeC,. Hence the map
¢:C, p, — Cp is a retraction. Further for any x € C, ,, and y € C,,,
we have that xy € C,,, and therefore ¢(xy) = xy. On the other hand,
o(xy) = o(x)o(y) = ¢(x)y, since y & Cpp,. O

Proposition 2.4. For each finite monogenic semigroup C the

r,mo>

centered upfamily (C,,) is the zero of the semigroup N_,(C, p, ).

Proof. Let ¢ : C, ,, — C,, be the retraction from Lemma 2.3. Since
xF o xC,, = ¢(x)C,, = C,, for each x e C,, and F e(C,), then

xF € (C,,) and (C,,) is a right zero according to Proposition 1 from [15].
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We shall show that (C,,) is a left zero, that is (C,,) A = (C,,) for
each A e N_,(C, ). Since C,A =C,,0(A)=C,, for Aec A, then
(Cp)c{Cp)oA. If M €(C,, )0 A, then M o UgecmgAg, {Agtgec, © A
Since A is a centered upfamily and C,, is finite, then there exists
ae ﬂgecm Ag. Therefore, M > UgeCm gla} = C,,a = C,0(a) = C,,
and M e (C,,). O

Since an element z of a semigroup S is a zero in S if and only if the
singleton {z} is an ideal in S, Proposition 2.4 implies the following:
Proposition 2.5. The minimal ideal of the semigroup N_,(C, ,,) is

singleton, that is K(N_,(C, ,,)) = {(Cp,)}-
3. Commutativity and the Center

Theorem 3.1. A finite monogenic semigroup C, ,, = {a,...,ad", ...,

m+r—1|ar+m _ ar}

a of order m+r -1 has commutative extension

N_(Cy 1) if and only if

(r, m) e {1,1), (1,2), (2,1), (2,2), (3,1)}.

Proof. It was proved in the paper [15] that the extension N_,(G) of
a group G is commutative if and only if |G| < 2. Since for m > 2, the

extension N_,(C, ,,) contains a noncommutative subsemigroup
N_,(Cp,), then N_,(C, , ) is not commutative. So it is sufficient to
consider only finite monogenic semigroups of period m < 2.

If index r =1, then C, ,, is a cyclic group of order m, and thus for

r =1, the semigroup N_,(C, , ) is commutative if and only if m < 2.
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If r = 2, m € {1,2}, then the product xy of any two elements of C, ,,

is contained in the maximal subgroup xy € C,,, and thus xy = ¢(xy) =

o(x)p(y), where ¢:C, , — C, is the retraction ¢:s — es. Since

extensions N_,(G) of groups G of order 1 and 2 are commutative and the

map N_u9: N,(C, ) > No(Cp) is a retraction according to

Proposition 2.2, then
AoB = N<oa(p(~’4) ° N<o)(P(B) = N<w(P(B) ° N<wq)(~’4) =BoA,

for any A, B € N_,(C, ). Consequently, the semigroups N_,(Cg 1)

and N_,(Cy o) are commutative.

Consider the semigroup Cj3; = {a, a?,a® :a* =a®}.  The
semigroup N_,(Cs ;) contains 10 elements.
Let us introduce the notation

5 =13 = (o)), Ve={FcCsy:|Fl22xeF}

Also the principal ultrafilter ({e}) and the upfamily {Cs} are identified

with e and Cs 1, respectively.

The following Cayley table implies the commutativity of N_,(Cs ).
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o a 2 | a® |(12 |a3 |(13 Va | Vg2 | Vg3 | Cs1
a a 2
a
3 3 3 3
a o2 3 | 43 E o o3 a o3 o3 @
o2 o2 o2 2
a? a® a® a® a® a® a® a® a® a® a®
a® a® a® a® a® a® a® a® a® a® a®
2 3 3 3 3 3
I T R R I I B A I I
a o2 o2 o2 o2 o2
3 3 3 3 3 3
A I S I A N G I T N I
a o2 o2 o2 o2 o2
3
|a a3 a3 a3 a3 (13 a3 a3 a3 a3 a3
2
a
Va |a3 a3 a3 ad a® a3 a® (13 (13 a®
a2 (12 (12 az (12
V2 a® a® a® a® a® a® a® a® a® a®
Va3 a3 a3 a3 a3 (13 a3 a3 (13 (13 a3
3 3 3 3 3
C31 |a a3 a3 |a | a3 |a (13 (13 |a
o2 o2 2 o2 o2

Consider the semigroup Cs3 ¢ = {a, a?,a®, a* 1 a® = a®) and centered

upfamilies A = ({a, a®}), B = ({a, a®}, {a, @®}) of the semigroup
N_,(C3. ). Since
AoB = {{a, a*}) = ((a?, a®, a ) = Bo A,

then the semigroup N_,(C3 3 ) is not commutative.

Let r > 4. Consider centered upfamilies A = ({a, a®}) and B = ({a,
a?}, {a?, a®}). We have that a® ¢ a{a, a®}Ua?{a?, a®} e Ao B, but

a® e F for any F' € Bo A. Consequently, AoB = Bo A and for each

r > 4 asemigroup N_,(C, , ) is not commutative. O
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Let us study the center of the semigroup N_,(C, ,,). Since
monogenic semigroups are commutative, then the formula

EOM:<Ua*Ma:LE£,{Ma}aeL CM>
aelL

implies that the center C(N_,(C, ,)) of a semigroup N_,(C, )
contains all principal ultrafilters. It was shown in [15] that C(N_,(G))
= {({g}) : g e G} U {(G)} for a finite Abelian group G, that is the center

C(N.,(G)) of the semigroup N_,(G) is isomorphic to G°. Therefore,
C(No(Cp)) = (Cp ).

Lemma 3.2. Let ¢ : S — I be a retraction of a semigroup S on an

ideal I. If a € C(S), then ¢(a) € C(I).
Proof. Indeed, for any x € I, we have
pla)x = o(a)p(x) = olax) = o(xa) = ¢x)o(a) = xo(a).
O
Theorem 3.3. For each finite monogenic semigroup C, ,,, the center
of the semigroup N <m(Cr’ m ) contains centered upfamilies that are neither

principal ultrafilters nor the zero of N_,(C, ,,). The center of the

semigroup N_.,(Csg ) contains m +5 elements.

Proof. Since by Lemmas 2.3 and 2.2 the maps ¢:C, , — C,,
o(x) =ex and N_,¢: N_,(C, ,,) > N,(C,) are retractions and
(Cp,) is the zero of N_,(C, ,,) and N_,(C,,), then Lemma 3.2 implies

that

C(N<o(Crm)) & (Nee) ' ({({8)) - & € Cr} UL(C)}).
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1

Let a be a generator of a semigroup C, ,,. Consider elements o’ and

o(a"1) = ea” ! % a"!. We claim that centered upfamilies A = ({a’ !,
ea” ™), B=({ad"11UC,), and C = ({a"}UC,, \ {ea”}) are central
elements of the semigroup N_,(C; ,, ).

Indeed, since a"'x e C,, ={a’,...,a” ™™} for each «x e Cr m»
then a"lx = ¢(a”lx) = ¢(a” 1 )p(x). On the other hand, since C,, is an
ideal of C, ,,, then ¢(a" ' )x e C,, and

r,m»

ola" ) = g(o(a” ™ )x) = e(o(a” ™ )p(x) = o(a” ! o(x).

Consequently, ¢(a”" ! )x = " 'x for any x e Cy - Therefore,

Ao M = (pla™ ) o M = M (fola™)}) = Mo A,
BoeM=(Cp)eM=Mo(C,)=MoB,
CoM=(Cp)oM=Mo(Cp)=M-oC,

for any M € N_,(C, ,,) and thus A, B, C € C(N_,(C; ,)).

Consider the finite monogenic semigroup Cs , = {a, a?, ..., am+1|

m+2 _ a2 }

a In this case, xy € C,, for any x, y e Cy, and thus

AoB = N_,0(A)o N_,o(B) for any A, B € N_,(Cq ,,). It is easy to see
that e =a™ 1is the identity element of the maximal subgroup
Cp =Cy m\{a}. Since o(a)=ea = a™a = ™", then o™ is the
unique element whose preimage under retraction ¢ : Cy ,, — C,, 1s not
a singleton. Therefore,

C(Noo(Co,m) = {{{a, @™*1}), (Cp), (Com)s (Com N Ha™1), ((g)) 1 8 € Co )}

O
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Problem 3.4. Given a monogenic semigroup C, ,,, r > 2, describe

the center of the semigroup N_,(C, ,, ).

4. Right and Left Cancelable Elements

In this section, we shall detect right and left cancelable elements of
extensions N_,(C, ,, ) of finite monogenic semigroups C, ,,.

Proposition 4.1. The extension N <w(Cr,m) has (left, right) cancelable
elements if and only if the index r of a monogenic semigroup C, ,, is equal
to 1.

Proof. Let r >1 and a be the generator of a semigroup C, ,,.
Consider the map ¢ : C, ,, - C,, ¢ : x — ex, where e is the neutral
element of the cyclic group C,,. As we showed in the proof of Theorem 3.3,
o(a" 7 )x = @’ x forany x € C, .

Let M be a centered upfamily on a semigroup C, ,,. Then we obtain
({a™ 1) o M = <Ua€{ar,1}a My AMy Jgeiay © /\/l> = (o’ M : M < M)
= (9(a"™ )M : M € M) = {o(a” ™ )}) o M and Mo ({fa"1}) =
<UaeMa*{ar_1} ' M e /\/l> = <Mar_1 : M e /\/l> = <M(p(ar_1) ' M e /\/l>
= Mo {{p(a"1)}). Since a"! = ¢(a’!), the centered upfamily M is
neither left nor right cancelable.

If r =1, then a monogenic semigroup C; ,, = C,, is a group. Let e be
the neutral element of the group C,,. Then ({e}) o M = M = Mo ({e}) for
any M e N_,(Cy, ), and equalities 7  ({ef) = V= (fe}), ({e}) o x = ({e) o ¥

imply that y = ). Consequently, the principal ultrafilter ({e}) is a

cancelable element of the semigroup N_,(Cy ,, ). O
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If G is a group, then the formula

£0M=<Ua*Ma:L€£y {Ma}aeL CM>
aelL

implies that the product £ o M of any two centered upfamilies £ and
M is a principal ultrafilter if and only if both £ and M are principal
ultrafilters. Therefore, we deduce the following proposition:

Proposition 4.2. For a group G, the set N_,(G)\ {({g}): g € G} is
an ideal in N_,(G).

Lemma 4.3. A semigroup S is a left (right) cancellative semigroup if

and only if all principal ultrafilters are left (right) cancelable elements in
the extension N_,(S).

Proof. If an element a € S is not left (right) cancelable in the
semigroup S, then it is clear that the principal ultrafilter generated by

the element a is not left (right) cancelable in N_(S).

Let S be a left (right) cancellative semigroup, a €S and
% Y € N.,(S), x # Y, then without loss of generality we can assume that

X e x\ Y for some X € y. Therefore, (S\ X)NY = 0 for any Y € ).
Since each element of S is left (right) cancelable, then (S \ aX)NaY = 0

(S\Xa)NYa # 0), and thus ({a})oy = ({a}) o V(x o ({a}) # Y o ({a})).
Consequently, the left lia)) (right r<{a}>) shift is injective and the

principal ultrafilter ({a}) is left (right) cancelable. O
Proposition 4.4. An element M € N_,(C, ,,) is left (right) cancelable
if and only if M is a principal ultrafilter.
Proof. Since in any group, in particular in the cyclic group C, ,,, all

elements are cancelable, then all principal ultrafilters are cancelable in

the extension N_,(C; ,, ) according to Lemma 4.3.
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Assume that some centered upfamily M e N_,(Cy , )\{({g}): g €Cy n}
is left cancelable. This means that the left shift 1, : N_,(Cy p,)
= N_,(Cy ), Iy 0 A Mo A, is injective. According to Proposition
4.2, the set N_,(Cy )\ {(lg}): g € C; ,} is an ideal in N_,(C; ,,).
Consequently, Ly(N<o(C1m)) = Mo N y(Cp ) © Ne(Cp )\ {({g))

g € Cy ). Since N_,(Cy ,,) is finite, I, cannot be injective.
For the right cancelable elements the proof is analogous. O
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